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ABSTRACT: Lanthanum, as a fluorescent element, was
encapsulated in complexing silica xerogel by using a one-pot
procedure: silica formation from tetraethyl-orthosilicate and
3-aminopropyltriethoxysilane, its chemical modification by
reacting with 2,4-dihydroxybenzaldehyde, and lanthanum
complexation through the formed hydroxy-azomethine
groups occurred in the same reaction system. A polydime-
thylsiloxane-a,x-diol with average number molecular
weight of 20,000 was added in the sol–gel system to facilitate
obtaining the flexible, free-standing films. Using different
molar ratios among the reactants, a series of experiments was
performed and the fluorescence of the resulted compounds
was evaluated, since the photophysical properties of the pre-
pared compounds strongly depend on the composition. The
acquired data have been used for fluorescence modeling
based on soft computing instruments. Neural network

models, individually or aggregated in stacks, were developed
to estimate the fluorescence intensity depending on the
reaction mixture composition: tetraethyl-orthosilicate, 3-ami-
nopropyltriethoxysilane, 2,4-dihydroxybenzaldehyde, lantha-
num acetate, and polydimethylsiloxane-a,x-diol amounts. A
procedure based on genetic algorithms was used to design
simple neural networks. Two main goals are pointed out in
this article: developing a general methodology for modeling
the complex processes with simple or stacked neural net-
works, and demonstrating the improvement of the modeling
performance by combining different neural networks. VC 2010
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INTRODUCTION

Because of their high paramagnetism and fluores-
cence, the rare earth-based compounds are of high
interest for many applications, such as catalysis,
optoelectronic, or life sciences.1 To use them in cer-
tain domains, these compounds are encapsulated in
a matrix, usually an organic polymer. The existence
of wide ranges of rare earth ions and host polymers
in which these compounds can be incorporated
allows to obtain products having absorption and
emission bands covering the selected ranges of the
electromagnetic spectrum.2,3 However, a quenching
effect occurs when a conventional doping procedure
is used. This is due to the fact that only weak inter-
actions (such as hydrogen bonding, van der Waals
force, or weak static effect) do exist between poly-

mer and inorganic parts, while the surrounding
hydroxyl groups have high-energy vibration. A pos-
sibility to change this ratio of forces consists in the
complexation of the rare earth ions by ligands that
are covalently bound to the polymeric matrix.4 Silica
is commonly used as a rigid matrix for ligand
immobilization. Silica xerogels doped with rare
earths are of great interest for technological applica-
tions in the field of optical devices.5 The immobiliza-
tion of chelating groups on the silica gel surface can
occur either by chemical modification of the silica or
through simple physical adsorption processes.4

The sol–gel process based on hydrolysis/polycon-
densation reactions of the proper silicon alkoxydes
is a convenient and versatile method for preparing
transparent optical materials in mild conditions.2,3

Furthermore, by changing the sol–gel reaction condi-
tions, the control of the microstructure is allowed for
the external shape or homogeneity. The optical prop-
erties are strongly modified when crystallization of
the silica network or clustering of the rare earth-
based compounds occurs.5

In a previous article,6 complexed La as fluores-
cence center has been encapsulated in an inorganic
matrix either as precomplexed form,7 or by in situ
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complexation8 in a silica generating sol–gel system.
In the last case, the complexing groups were
attached to the silica network interpenetrated or not
with a polydimethylsiloxane network. The fluores-
cence study revealed that, although the complexed
La as such is fluorescent, the intensity of this effect
depends in a complex manner on the matrix type in
which it is incorporated.

Artificial neural networks (ANNs) have been
increasingly used in the chemical process industry,
especially for dealing with some complex nonlinear
processes whose understanding is limited.9 Polymer-
ization processes are typical examples for this type
of applications.

In many cases, neural networks used as individual
models do not lead to satisfactory results. One way
to improve the performance of such models is repre-
sented by grouping them into stacks, homogeneous
or heterogeneous, based on the idea that individual
models can capture different aspects of the process
and the stack can gather them.

Stacked generalization was proposed as a method
of using multiple models to provide improved accu-
racy or confidence intervals.10 Wolpert10 suggests
the use of a number of ANNs, on different subsets
of the data, to obtain models that are slightly differ-
ent. These models are then recalled over the remain-
der of the data and this information is used then in
the stacking process.

Several significant issues related to stacked neural
networks and some examples of using these types of
models, selected from the polymerization process
field, are presented in the introduction of this article.

A series of articles belonging to Zhang et al.11–16

are representative for the use of stacked neural net-
works in the polymerization process modeling. For
instance, neural networks aggregated in stacks were
used in two approaches11: (1) a model of the poly-
merization process is developed for the prediction of
the initial reaction conditions, and the amount of
impurities and reactor wall fouling are then calcu-
lated by comparing the predicted values with the
nominal initial conditions; (2) a neural model is con-
structed for the dynamic behavior of the polymeriza-
tion process and the predicted trajectories are then
compared with the online measurements of conver-
sion and coolant temperatures.

A different technique for aggregating multiple
models using bootstrap resamples of the training
data is proposed by Breiman and is known as Bag-
gings.12 A bootstrap resampled data set represents a
subspace of the original training data set. Neural
networks trained on different bootstrap resampled
data sets would be more dissimilar than those
trained on the same training data. When trained
a bootstrap resampled data set, different neural
networks will perform differently within distinct

regions of the input space. Although these neural
networks are correlated since they intend to model
the same relationship, the independent elements
among these models can be discovered through
principal component analysis (PCR).13 It is proposed
in Ref. 13 that the appropriate weights for combin-
ing individual neural networks to be obtained
through PCR. Bootstrap-aggregated neural networks
are proposed to build inferential estimators for
online evaluation of polymer quality. A technique
for obtaining robust nonlinear models by aggregat-
ing multiple neural networks (data are resampled
using bootstrap procedure to form several different
pairs of training and testing data sets) was success-
fully applied to the building of software sensors for
a batch polymerization reactor.14 Additional exam-
ples of polymerization processes modeled with neu-
ral networks can be found in others approaches of
Zhang et al.15,16 Polymer melt index were success-
fully estimated using an aggregated neural net-
work.15 A batch-to-batch optimal control strategy
based on the linearization of stacked neural network
model is proposed in Ref. 16.
Unlike the ‘‘bagging’’ and ‘‘boosting’’ approaches,

which only combine classifiers of the same type, the
stacking approach can combine several different
types of classifiers through a metaclassifier to maxi-
mize the generalization accuracy.17

An important article for the use of stacked neural
networks in modeling the polymerization processes
belongs to Tian et al.18 Stacked recurrent neural net-
works are built to characterize the gel effect, which
is one of the most difficult parts of free radical poly-
merization modeling. Comparative studies with the
use of a single neural network show that stacked
networks provide superior performance and
improved robustness.
Different methods of combining neural networks,

particularly their outputs, have been developed: mini-
mizing the squared prediction error using cross valida-
tion,10 imposing proper constraints on the weights,19

using the confidence of an individual model as the
weight for that model,20 applying the technique of
principal component regression21 or weighted averag-
ing of the individual networks outputs.18

Our group has a number of achievements in the
field of modeling and optimization of polymeriza-
tion processes using the tools of artificial intelli-
gence. Individual neural networks were used to
model different parameters such as conversion, poly-
mer molecular weight, mass reaction viscosity,
polydispersity index,22–25 copolymer composition,26

polymerization yield, swelling degree,27,28 or the
kinetics of the polymerization reaction.29 Alterna-
tively, stacked neural networks represented a better
solution for the modeling of complex nonlinear proc-
esses with an insufficient number of experimental
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data.30,31 The influence of the reaction conditions
(functional group content in silica, CuCl2 solution
concentration, pH, and time) upon the absorbance
was evaluated based on simple neural network
types (multilayer perceptron, generalized feed-for-
ward neural networks, and Jordan Elman net-
works).31 Another variant of modeling applied in
Ref. 30 is based on using individual neural networks
for each set of experimental data, corresponding to
each sample, then aggregating them into a stack. It
is a particular type of combination where the output
of the stack if composed from the outputs of the
individual neural networks. It was proved that
stacked neural networks designed as a software as-
sembly represent models with an accurate capacity
of generalization.

In this article, we encapsulated a rare earth, lan-
thanum, in silica by in situ complexation with che-
lating groups attached to the silica, according to the
procedure already described in Ref. 6. Hydroxy-azo-
methine groups, known to form readily complexes
with transition metal ions, are generated with this
aim in the same system. Polydimethylsiloxane-a,x-
diol (PDMS) was added in different proportions in
the sol–gel generating silica system to induce flexi-
bility to the prepared materials. Because of the high
complexity of the process, the influence of the reac-
tion mixture composition on the fluorescence inten-
sity was modeled by using the artificial intelligence
instruments based on the acquired experimental
data series. Neural networks are developed using a
procedure based on genetic algorithms to obtain the
optimal structure of the model. Then, simple neural
networks are combined in stacks, proving the effec-
tiveness of these models compared with the neural
networks used individually.

MATERIALS AND METHODS

Materials

Lanthanum acetate La(CH3COO)3 (LaAc3), pur-
chased from Merck was used as received, M
¼ 316.06.

Tetraethyl-orthosilicate (TEOS) purchased from
Fluka (purity > 98%, b.p. ¼ 163–167�C, d204
¼ 0.933), was used as received.

3-Aminopropyltriethoxysilane (APT) (Fluka) M
¼ 221.37, b.p. ¼ 213–216, d204 ¼ 0.949.

2,4-Dihydroxybenzaldehyde (AR) was prepared
and purified according to the procedure
described in literature32 (yield: 33%, m.p. 135–
137�C).

A polydimethylsiloxane-a,x-diol (PDMS), having
an average number molecular mass of about
20,000 (determined by GPC), has been synthe-
sized by equilibrium cationic ring-opening poly-

merization of octamethylcyclotetrasiloxane (D4)
in the presence of Purolite CT 175 as a catalyst
and water as a chain transfer agent.33

Dibutyltindilaurate (DBTDL) was received from
Merck-Schuchardt, d204 ¼ 1.055 and used as
received.

Solvent: the tetrahydrofuran supplied by Fluka
was used as such.

Methods

Equipments

Fourier transform infrared (FTIR) spectra were
obtained on a Bruker Vertex 70 FTIR analyzer.
Depending on the state of the sample, the analyses
were performed either in transmittance mode in KBr
pellets or on the films in reflectance mode (ATR).
The luminescence spectra were recorded at room

temperature with a Perkin Elmer LS55 spectrometer
with a solid sample holder. Emission spectra were
obtained at an excitation wavelength of 365 nm. The
excitation and emission slits were set at 2.5 and
12 nm, respectively.

Procedure

The preparation procedure is reported in our previ-
ous article.6 PDMS, TEOS, and APT were mixed to-
gether in the amounts presented in Table I. A homo-
geneous, colorless transparent mixture is formed.
The corresponding amount of AR solved in THF for
0.5 mol/mL was added as silica modifier and the
stirring continued 1 h at room temperature to pro-
vide the hydroxyl-azomethine complexing groups.
La(CH3COO)3 solved in water for 0.5 mol/L acidi-
fied with a drop CH3COOH was added as La sup-
plier to form silica containing complexed La. The
mixing continued 1 h at room temperature. Then,
DBTDL, as a catalyst, was added and, after stirring
½ h, the mixture was poured on Teflon foil and left
to evaporate solvent. The films were maintained at
room temperature for 48 h and another 24 h in vac-
uum at 50�C.
TEOS was used as precursor for silica. APT was

added to provide aminopropyl functions on the
silica. This function was reacted with 2,4-dihydroxy-
benzaldehyde resulting in 2,4-dihydroxyazomethine
moiety. The azomethine and OH groups placed in
favorable positions close chelate ring with La ions
added in the reaction mixture as LaAc3. To obtain
silica having complexed La as a flexible free-stand-
ing film, PDMS having a molecular weight of about
20,000 was added to the sol–gel-complexing system
in the final step of the reaction. In the presence of
water (both resulted from the azomethine formation
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reaction and added with LaAc3) and DBTDL, the hy-
drolysis followed by condensation of the alkoxysi-
lanes (TEOS and APT) occur. Concomitantly, SiAOH
groups formed by hydrolysis of silanes react with
that belonging to polydimethylsiloxane-a,x-diol.
Thus, a polydimethylsiloxane network is formed,
which is connected to the silica network. The possi-
ble reaction sequences are showed in Scheme 1.

The formation of this complex structure was
proved by FTIR spectra where characteristic bands
are found for:

• azomethine-La complex: 1644 cm�1 (C¼¼N), 1613
cm�1 (phenyl cycle);

• silica: the large band between 1220 and 1019
cm�1 enveloping from the most crosslinked to
linear SiAOASi bands, as well as the sharp
band at 460 cm�1 assigned to the silica SiAOASi
bending vibration.

• polydimethylsiloxane: 2965 cm�1 (CAH from
SiACH3), 1264 cm�1 (d SiACH3 sym.), 798 cm�1

(CH3 rocking asym. SiAC), 865 cm�1 assigned to
SiAOASi bond formed by condensation between
silica-SiAOH and PDMS-SiAOH groups.34

To find the conditions in which a maximum fluo-
rescence can be reached, a series of experiments
have been performed in different conditions. The
resulted materials were investigated by fluorescence

spectrophotometry to evaluate values of the wave-
length and emission spectra intensity, Iem. The
acquired data concerning to the reaction conditions
and fluorescence intensity of the obtained materials
(Table I) were used for modeling, based on soft com-
puting instruments (neural networks and genetic
algorithms).
The investigations were performed after the sam-

ples were kept in the laboratory environment for
about 2 months. The tests revealed that, after this
time, the mass of the samples is stabilized.

Neural network modeling

Neural networks have gained significant popularity
because of their capacity to create nonlinear map-
pings between input and output variables and to the
possibility of applying them to various processes.
Two elements are very important for the applica-

tion of a modeling method based on neural net-
works35: (1) Understanding the theory underlying
the modeling method, as well as knowledge of
advanced methods for improving the modeling
results. (2) Understanding the process of applying
the method to real data, including model testing and
result interpretation.
In general, there is no assurance that any individ-

ual neural model has extracted all the relevant infor-
mation from the data set. The idea of combining

TABLE I
PDMS/Silica Composites Doped with In Situ Complexed La: Reactant Amounts and Fluorescence Data

Code TEOS (mmol) APT (mmol) AR (mmol) LaAc3 (mmol) PDMS (mmol) kem Iem

RL1 22 0.64 0.64 0.25 0.01 459;515sh 9.4
RL2 22 0.64 0.64 0.50 0.0125 449;518sh 1363
RL3 22 0.64 0.64 0.75 0.0250 457;519sh 1043
RL4 22 0.64 0.64 0.125 0.050 460 17
RL5 22 0.64 0.64 0.25 0.075 464 5.5
RL6 22 0.64 0.64 0.25 0.10 459 23.6
RL7 11 0.64 0.64 0.25 0.10 460;539sh 11
RL8 44 0.64 0.64 0.25 0.10 435;564 11
RL9 66 0.64 0.64 0.25 0.10 444;550 1828
RL10 22 1.28 1.28 0.50 0.01 452;520sh 705
RL11 22 1.28 1.28 0.50 0.025 465 6
RL12 22 1.28 1.28 0.50 0.075 468 7.4
RL13 22 1.28 1.28 0.50 – 451;516sh 1073
L1 22 0.64 – – – 442 2193
L2 22 0.64 0.64 – – 454;520sh 1233
L3 22 0.64 0.64 0.25 – 455;528 1215
L4 22 0.64 0.64 0.25 0.25 460 13.3
L5 22 0.64 0.64 0.50 0.25 466 5.8
L6 22 0.64 0.64 0.75 0.25 454 19.2
L7 22 0.64 0.64 0.125 0.25 458 19.2
L8 22 0.64 0.64 0.25 0.50 465 26.7
L9 22 0.64 0.64 0.25 0.75 462 20
L10 22 0.64 0.64 0.25 0.125 468 53.3
L11 11 0.64 0.64 0.25 0.25 457 10
L12 44 0.64 0.64 0.25 0.25 460 16.7
L13 66 0.64 0.64 0.25 0.25 466 11.7
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neural network models is based on the premise that
different neural networks can capture different
aspects of the process behavior and that aggregating
this information should reduce uncertainty and pro-
vide more accurate predictions. It is always possible
that a stacked network could outperform a single
best-trained network for the following reasons: (1)
Optimal network architecture cannot always be

guaranteed. (2) The optimization of the network pa-
rameters is a problem with many local minima.
Even for a given architecture, final network parame-
ters can differ between one run of the algorithm and
another one. (3) Different activation functions and
learning algorithms can also lead to different gener-
alization characteristics, and no one activation func-
tion or learning algorithm is the best in all cases. (4)

Scheme 1 The possible reactions sequence.
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Convergence criteria used for network training can
lead to very different solutions, for a given network
architecture.18

Different types of modeling are applied in this ar-
ticle, based on individual and stacked neural net-
works, to find the best model for the approached
process.

The experimental data from Table I were used for
developing and testing a model, which evaluates the
emission spectra intensity as function of reaction
conditions. TEOS, APT, AR, LaAc3, and PDMS
amounts are considered as input parameters. The
products, formed either as film or powder, were
investigated by emission spectroscopy. The values of
the emission spectra intensity, Iem, were considered
as output parameters (Table I).

Briefly, neural networks are computational archi-
tectures that combine simple units in an arrange-
ment that can then exhibit complex behavior. One
of the most familiar architectures is the feed-for-
ward multilayer neural network or feed-forward
multilayer perceptron (MLP).35 The number of input
neurons (which constitute the input layer) is equal
to the number of input variables, 5 for our case
study, and the output layer contains a single neu-
ron, corresponding to the single output variable.
The number of intermediate layers and the number
of neurons in them are to be determined. Conse-
quently, the modeling goal is the development of a
network 5 : x : 1 or 5 : x : y : 1 (with one or two hid-
den layers) which should satisfy the imposed per-
formance criteria.

The experimental data available in Table I are split
into training and validation data sets (15% validation
data) because it is more important to evaluate the
performance of the neural network on unseen data
than on training data. In this way, we can appreciate
the most important feature of a neural model—the
generalization capability.

The most common practice for developing the
neural network architecture is the repetitive trial and
error method, which is done by testing several topol-
ogies and comparing the prediction errors. Smaller
errors indicate potentially good topologies, i.e., neu-
ral network topologies with chance to train well and
to output good results. Generally, this method is
time-consuming and produces uncertain results
because it is based on the human expert’s past expe-
rience and intuition.

There is yet another class of methods used for
choosing the network topology, known as evolution-
ary methods. One of the most popular methods
within this class is the genetic algorithm (GA)—a
widely used optimization method inspired from evo-
lution theory, in which the fittest species survive
and propagate, while the less successful tend to
disappear.

In a previous article,36 we proposed a genetic
algorithm based method for detecting the optimal
topology for a neural network that should approxi-
mate as well as possible the test data. The represen-
tation of solutions in chromosomes must simultane-
ously takes into account two problems: including the
information on network topology (number of hidden
layers, number of neurons in these layers), and
including actually the connection weights and biases
of the neurons, with the purpose of verifying the
network training errors. All this information is
encoded by real numbers, this is why we use the
real encoding for the chromosome genes.
Applying here this method, a neural network with

two hidden layers, having 24 and 8 neurons, respec-
tively, in these intermediate layers, MLP(5 : 24 : 8 :
1), is obtained based on the mean squared error
(MSE) minimization. The performances registered in
the training phase for this network were: MSE ¼
0.00106 and r (correlation between training data and
neural model predictions) ¼ 0.9889.
The chosen representation has both advantages

and disadvantages36:

• Advantage: the simplicity of the approach, as
the genetic algorithm also accomplishes the
finding of the optimum topology and the train-
ing of the neural network (determining the con-
nection weights that allow approximating the
test data).

• Disadvantage: a long training time because of
the large number of chromosome genes (both
information regarding the topology, and the
connection weights and the biases of the
neurons).

The activation function was a sigmoid bipolar and
the fitness function is equivalent in the present
approach to calculating the MSE for the test problem
for the neural network represented by a certain chro-
mosome. The mean squared error was computed
using the following formula:

MSE ¼

PP

j¼1

PN

i¼1

ðdij � yijÞ2

N � P (1)

where P is the number of output processing elements
(in this case, P ¼ 1), N is the number of samples in
the data set, yij is the network output for exemplar i
at processing element j, and dij is the desired output
for exemplar i at processing element j.
A possibility to improve the performance of the

model is represented by the use of stacked neural
networks. Combining multiple neural networks can
generate more accurate predictions than using any
one of the individual networks alone.
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Applying the method of successive attempts, dif-
ferent types of feed-forward networks have been
generated, varying the number of hidden layers and
the number of neurons in these layers. The selected
networks, in number of 3, did not record very good
performances, but they benefited from the simplicity
of topology. MLP (5 : 5 : 1), MLP (5 : 10 : 1), and
MLP (5 : 14 : 1), with MSE around 0.006 and r
approximately 0.970, have been chosen to form a
stack.

The method used to combine the parallel models
was the weighted summation of the individual out-
puts. Consequently, the performance of the stack is
influenced by the aggregated individual models and
their corresponding weights. Figure 1 presents the
stacked neural networks for our case study.

In this article, we compare the predictions of indi-
vidual and stacked neural networks, especially in
the validation phase, to select a neural model with a
high generalization capability.

Individual networks have been developed and
tested in the framework offered by the specialized
software NeuroSolutions. Subsequently, for design-
ing the stacked neural networks, an original pro-
gram was written in C#, which imports the individ-
ual models from NeuroSolutions, assemblies them in
the stack by summing the outputs weightily, allows
changing the weights of the single networks, and, in
the same time, performs the training and the valida-
tion of the stack model. In this way, the outcomes of
the program are the predictions on the training and
validation data, along with the performance
recorded in these phases.

RESULTS AND DISCUSSION

A route consisting in one-pot process by heating all
components together was applied to prepare a series
of polydimethylsiloxane/silica composites having
complexed lanthanum. The reaction conditions cho-
sen for different experiments were given in Table I
as well as optical properties of the synthesized
compounds.

The emission spectra of the PDMS/silica compo-
sites reveal a broad band located at 450–460 nm and

a shoulder at about 520 nm with lower intensity.
Different from other siliceous organic/inorganic
hybrids, the position of the emission practically does
not depend on the excitation wavelength in our
case.37 As a rule, it was found that the emission in-
tensity strongly decreases when the PDMS content
in composites increases. Thus, regardless the compo-
sition of the network, a PDMS content between 0.1
and 0.75 mol leads to quenching the fluorescence in
the system (Table I). The increase of TEOS content
(RL9) results in the intense emission, even if the
PDMS content is higher. At higher contents of TEOS,
a more compact network can be formed and the
coordination capability of lanthanum increases, lead-
ing to a very enhanced emission. The sample RL13,
which does not contain PDMS, has a higher emis-
sion by comparison with sample RL10, the both
samples having the same spectral pattern. The
increase of the content of APT and AR leads to the
decrease of the emission intensity and, for high
amounts of PDMS, the fluorescence is quenched.
When the concentration of lanthanum is high
enough (RL2, RL3), an increasing fluorescence inten-
sity was observed at room temperature. This
enhanced luminescence efficiency can be ascribed to
the greater lanthanum coordination in the network,
which determines the ligand rigidity and decreases
the nonradiative energy loss of the excited state
emission.
The fluorescence of the synthesized compounds

was correlated with the reaction conditions by using
a neural network methodology. Two issues were
pursued through this modeling: (1) to model the
actual process with errors as small as possible, such
that the predictions to be used for inexperienced
reaction conditions; (2) to develop a general model-
ing methodology based on neural networks, which
includes opportunities for improvement through the
stack combinations and which can be applied to
other complex, nonlinear processes.
Individual and stacked neural networks were

applied to the training and validation data sets to
compare their performance and, finally, to choose
the most appropriate model for the studied process.
Model estimation is performed in the training

phase when the network is presented with a set of
input–output pairs (desired output) and, for each
input, the network calculates its output (actual out-
put). The minimization of MSE means that the actual
output to be as close as possible to desired output.
This could be done by varying the network parame-
ters, i.e., weights and biases. In this work we applied
the well-known backpropagation algorithm where the
minimization of MSE is done by gradient descent
method and the weights are updated using the gener-
alized delta rule.
The relative error, calculated as:

Figure 1 Stacked neural networks.
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Er ¼
Iemexp � Iemnet

Iemexp
� 100 (2)

was used to evaluate the performance of the
neural models (individual and stack) in the training
and validation phases. In relation (2), indexes exp
and net denote experimental and network values,
respectively.

Different stacks were developed with the three
networks, MLP (5 : 5 : 1), MLP (5 : 10 : 1), and MLP
(5 : 14 : 1), the weight of each contributing to the
stack being varied. To find the optimal weights, the
first step was to systematically generate weights
between 0 and 100% with a step of 10%, and to re-
cord the average relative error and correlation on
the training and validation data sets. The best com-
bination corresponds to the weights of 20, 30, and
50%. These percentages represent the notations wi in

Figure 1, which are the weights applied to the out-
puts of the three networks aggregated in stack.
For the training phase, the comparison between

relative errors of the MLP (5 : 24 : 8 : 1) (the network
used individually) and the stacked neural network is
given in Figure 2. It is evident that the stack has
learned better the behavior of the process; the
smaller errors mean that the predictions of the net-
work are close to the experimental data. Figure 3
presents a comparison between experimental data
and stacked neural network predictions on training
data for Iem, proving that the model learned well the
system property.
In the second stage, the neural model is used to

predict output of the new input data (‘‘unseen’’ data,
not used in the training). The validation phase
defines the generalization capability of the model.
The predictions of the two selected neural models
and the experimental data are compared in Figure 4.
Individual neural network in Figure 4 is MLP (5 : 24
: 8 : 1).
Figures 2 and 4 takes into account the best single

network-based model and the stack formed by 20%
MLP (5 : 5 : 1), 30% MLP (5 : 10 : 1), and 50% MLP
(5 : 14 : 1). Table II presents the performance in the
training and validation phases, reflected through rel-
ative and maximum errors, for different stacked
neural networks formed by the above three net-
works, but with other weighted outputs. It is evident
that the combination 20, 30, and 50% is the best one,
leading to small errors.
Figure 4 emphasizes the fact that the predictions

of the stack are in better agreement with experimen-
tal data than those of the individual MLP. Therefore,
combining some neural networks (preferably differ-
ent neural networks) can provide a practical
approach to developing a better overall model for

Figure 2 Errors of the individual and stacked neural net-
work in the training phase.

Figure 3 Predictions of the stacked neural networks in
the training phase compared with the experimental data.

Figure 4 Predictions of the individual and stacked neural
networks in the validation phase compared with the ex-
perimental data.
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prediction, rather than searching for a single best-
trained model.

Consequently, the neural network methodology
provides useful and credible information for experi-
mental practice, which can be a guide for future
experiments or can substitute experiments that are
time and material consuming.

CONCLUSIONS

A series of polydimethylsiloxane/silica composites
containing complexed lanthanum ions was prepared
by using different molar ratios between reactants.
The study of fluorescence revealed that its intensity
depends in a complex manner on the composition.
Besides lanthanum as an active element, the fluores-
cence was also emphasized in the structures where
lanthanum missed (i.e., functionalized silica).
Instead, by the incorporation of PDMS as a mean to
prepare flexible film, the fluorescence decreases
being quenched.

The experimental data reported in this article have
been used for the synthesis modeling of the polydi-
methylsiloxane/silica composites, namely the fluo-
rescence property was estimated depending on the
content of TEOS, APT, AR, LaAc3, and PDMS in the
reaction mixture.

For such a complex process, it was proven to be
suitable a methodology based on neural networks,
consisting of the following stages:

• Individual neural networks have been designed
using a genetic algorithm technique for which
the basic elements of the network topology were
encoded within chromosomes. Development of
an optimal architecture of the network was
devised simultaneously with the network train-
ing and validation.

• Neural networks have been organized as stacks
by the connection in parallel of the individual
models and the weighted summation of the
model component outputs. The corresponding

weights of the individual model outputs have
been chosen accordingly to the performance of
the neural network stack model.

• Comparisons between the individual model and
stack-model predictions, on one side, and exper-
imental data, on the other side, have been made
with the aim of choosing the best-performance
model.

Two main conclusions can be formulated from the
results of this article. Genetic algorithms represent a
good and flexible method, easy to apply, with high
chances to provide an optimal configuration of the
neural networks. Second, stacking neural models is a
possibility to improve the performance of the neural
network-based model.
The proposed computing methodology is general

and can be applied also to other polymerization
processes whose physical and chemical governing
laws are not well known. The obtained predictions
provided useful information for the industrial and
laboratory practice, proving to be able to effectively
substitute material, energy, and highly time-consum-
ing experiments.
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